PAM3012

Digital Image Processing for Radiographers

The Fourier Transform \& The Frequency Domain

In this lecture

\star Frequency domain
\star 1D Fourier transform and it's inverse
$\star 2 D$ Fourier transform and it's inverse
\star Properties of the Fourier Transform

Frequency Domain

What is the frequency domain \& where does it fit into image processing?

Background

- Fourier Series:
- Any periodic function can be expressed as a sum of sines and/or cosines of different frequencies and amplitudes

- Fourier Transform:

- Non-periodic functions can be expressed as an integral of sines and/or cosines multiplied by weighting factors

Background

- A function represented as a Fourier series or transform can be recovered completely via an inverse process, with no loss of information
- Allows us to work in the Fourier domain and then return to the original domain

Fourier Transform \& Frequency
Domain

- 1D Fourier Transform
- 2D Fourier Transform
- Discrete Formulation
- Properties

Fourier Transform \& Frequency Domain

- 1D Function $f(x)$

1-Dimensional Fourier Transform

Discrete Fourier Transform

```
Continuous function V of
continuous variable t.
```

Discrete function V_{k} of discrete sampling variable t_{k}.

- Digital signals are discrete Discrete Fourier Transform (DFT)

Discrete Fourier Transform

- Discrete function: $f(x)$
- $x=0,1,2, \ldots$ M-1

$$
F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-\frac{j 2 \pi u x}{M}} \quad(\text { Equation 1) }
$$

For $u=0,1,2, \ldots$ M-1

Inverse Discrete Fourier

 Transform- Discrete function: F(u)
- $u=0,1,2, \ldots, M-1$

$$
f(x)=\sum_{u=0}^{M-1} F(u) e^{\frac{j 2 \pi u x}{M}} \quad \text { (Equation 2) }
$$

For $x=0,1,2, \ldots, M-1$

Discrete Fourier Transform

- $F(u) \& f(x)$ are known as a Fourier Transform Pair

$$
\begin{aligned}
& F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{\frac{-j 2 \pi u x}{M}} \\
& f(x)=\sum_{u=0}^{M-1} F(u) e^{\frac{j 2 \pi u x}{M}}
\end{aligned}
$$

Discrete Fourier Transform

$$
\text { Computing DFT } \quad F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-\frac{j 2 \pi u x}{M}}
$$

Substitute $u=0$ \& sum over all values of x

- Repeat for M values of u
- Total of M^{2} summations \& multiplications
- $F(u)$ has same number of components as $f(x)$ \& is a discrete quantity

Frequency Domain

- Euler's Formula

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

- Substitute into equation 1
$F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x)\left[\cos \left(\frac{2 \pi u x}{M}\right)-j \sin \left(\frac{2 \pi \mu x}{M}\right)\right]$
For $u=0,1,2, \ldots M-1$

Frequency Domain

$F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x)\left[\cos \left(\frac{2 \pi u x}{M}\right)-j \sin \left(\frac{2 \pi \mu x}{M}\right)\right]$

- Each term of Fourier Transform (i.e. value of $F(u)$ for each value of u) is composed of sum of all values of $f(x)$
- Each value of $f(x)$ is multiplied by sine \& cosine of various frequencies

Frequency Domain
$F(u)=\frac{1}{M} \sum_{x=0}^{M-1} f(x)\left[\cos \left(\frac{2 \pi \mu x}{M}\right)-j \sin \left(\frac{2 \pi \mu x}{M}\right)\right]$

- Domain (u) over which values of $F(u)$ range is appropriately called the frequency domain
- Each of the M terms is called the frequency component

Frequency Domain

Analogy: Prism

- Physical device that separates white light into its constituent colours.
- Each colour depends on it wavelength or frequency

Frequency Domain

Analogy: Prism

- Fourier Transform is a 'mathematical prism'
- Allows us to characterise a function by its frequency content

1-Dimensional DFT

- Discrete function $f(x)$
- Total of M data points
- $K=8$ points
- Amplitude, $A=1$

1-Dimensional DFT

- Discrete function $f(x)$
- Total of M data points
- $K=16$ points
- Amplitude, $A=1$

Note

1. Height Doubled
2. Intercepts Double
3. Reciprocal Nature of FT

1-Dimensional DFT

- When dealing with images only interested in magnitude of signal infrequency domain
- Magnitude of $f(x)=|f(x)|$

Discrete Fourier Transform

- Usually represented by x_{0} denoting $1^{\text {st }}$ point
- Value of sampled function $f\left(x_{0}\right)$
- Next sample taken at fixed interval from x_{0}

- Value of sampled function $f\left(x_{0}+\Delta x\right)$
- $k^{\text {th }}$ sample value $f\left(x_{0}+k \Delta x\right)$
- Final sample value $f\left(x_{0}+[M-1] \Delta x\right)$

Example

- A continuous signal is sampled with a 1 second interval between data points. If total of 1000 data points are sampled what is the increments size of the signal in the frequency domain?

Discrete Fourier Transform

M discrete data points sampled from a continuous signal
$f(x)$ for $x=0,1 \ldots$
M-1

- Samples not
necessarily taken at integer values

Discrete Fourier Transform

- $F(u)$ has similar properties, but sequence always starts at true zero frequency
- $u=0, \Delta u, 2 \Delta u \ldots[M-1] \Delta u$
- Δx and Δu are inversely related

$$
\Delta u=\frac{1}{M \Delta x}
$$

Discrete Fourier Transform

- What is the maximum frequency that is expressed by the FT?

$$
u_{\max }=\frac{1}{2 \Delta x}
$$

Example

- A continuous signal is sampled with a 1 second interval between data points. If total of 1000 data points are sampled what is the maximum frequency appearing in the frequency domain?

Digital Image

- Digital Image can be described by a discrete 2D function
- x, y and $f(x, y)$ are all finite and discrete
- $f(x, y)$ is the gray level in each pixel
- Define number of x pixels M \& number of y pixels N

2-Dimensional Fourier Transform

Fourier Transform \& Frequency Domain

- 2D Function $f(x, y)$

2D Discrete Fourier Transform

- Equations 1 \& 2 become

$$
\begin{gathered}
F(u, v)=\frac{1}{M N} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{v}{N}\right)} \\
f(x, y)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi\left(\frac{u x}{M}+\frac{v}{N}\right)}
\end{gathered}
$$

Example

Frequency Domain

- Values of $F(u, v)$ contain all values of $f(x, y)$ modified by exponential
- Impossible to make direct associations between specific components of image and its FT
- General statement can be made
- Where u = v = zero:
- Average gray-level of image
- Frequency (rate of change):
- Patterns of intensity variations

Example

Example

Example

Summary

*Frequency domain
\star 1D Fourier transform and it's inverse
\star 2D Fourier transform and it's inverse
*Properties of the Fourier Transform

